
Sweet Ant Tools 1.0
Michel CASABIANCA
casa@sweetohm.net

SAT is a set of tools for Ant under Apache license. You will find console mode (that runs Ant in a
console that lets you type commands to run builds for instance) that boosts build times. You'll find
also tasks to launch Beanshell scripts from within Ant ones, to perform XSLT formatting using XT
and to manage XML documents (merge, split or include them in other files). An Ant mode for
Emacs is also included. This package is used to generate my web site and Éditions O'Reilly's web
site.

Install SAT

Zip Archive sat-0.9.zip

You must first install a Java Virtual Machine version 1.2 or 1.3. You can download one for free on
Sun web site. The latest version of SAT is available on my personal web page.

To install SAT, unzip the archive in a directory where you want to install it. Then copy files in the
lib directory into the lib directory of Ant.

Compile SAT

To compile SAT, you must install Ant version 1.3 or 1.4. You can download it on Apache web site.
You must also install jar files of Ant (ant.jar) and a JAXP XML parser (for instance the one you can
download on Sun's web site) in the lib directory of SAT.

To generate the SAT jar file, type ant jar in the prj directory. Then put the generated jar file
(sat.jar in the lib directory) in the lib directory of Ant. You will then be able to generate the
documentation and zip archive by typing ant on the command line (SAT uses itself to generate it's
documentation and the zip archive).

07/14/03 Sweet Ant Tools 1.0 1

mailto:casa@sweetohm.net
http://jakarta.apache.org/ant
http://www.beanshell.org
http://www.jclark.com/xml/xt.html
http://www.oreilly.fr
http://www.oreilly.fr
http://java.sun.com/products/jdk/1.2
https://sweetohm.net/article/sat.en.html
http://jakarta.apache.org/ant
http://java.sun.com/xml

Ant Console

This tool runs Ant in a console (in a terminal or within your favorite IDE) and lets you type
commands to run targets of the loaded build file. This method runs much faster than Ant because it
saves time to launch the Java Virtual Machine, JIT compilation time and build file loading. You can
run builds up to 5 times faster than running Ant on the command line. It is obvious than you save
more time on small builds (when time spent in usefull code is small compared to startup time).

Installation

Go in the bin directory of your Ant installation, copy the ant script (or ant.bat for OS disabled
people) to file antc (or antc.bat). Replace org.apache.tools.ant.Main with
net.cafebabe.sat.ant.Console. This script will launch the Ant console instead of
traditional Ant. Make sure that this script is in your PATH.

You must, of course, install SAT by dropping the file sat.jar in the lib directory of your Ant
installation.

Usage

To run the Ant console, go in the directory of your project (where is living your build.xml file) ant
type antc. You will display an help screen typing antc -help on the command line :

Ant Console 0.8 (C) Michel Casabianca 2003
type "help" to get help on console commands
Usage: antc [-help] [-version] [-timer] [-file file] [-find file]
-help Print this help screen
-version Print the version
-timer Print build times
-file To set the build file
-find To search for the build file

When you launch the Ant console, you will be promped as following :

Ant Console running

To display an help screen about the console commands, type help in the console :

Commands you can run in the console are the following:
 help To display this help screen

07/14/03 Sweet Ant Tools 1.0 2

 exit To quit the console
 desc To describe the loaded project
 load file To load the build file
 find file To find the project file
 reload To reload the current project
 timer on/off To set timer on/off
 target foo To run the target foo
 targetname To run the target (can't be a console command)
 <empty> To repeat the last command

Note that you can launch a given target by typing its name (this is a shortcut for the target
command) provided that this target hasn't the same name than a console command. You can repeat
the last command by typing ENTER.

You can load a build file using the load command (the path is then relative to the current
directory) and search for a build file recursively in the file system with the find command (that
behaves like the -find command line argument for Ant). You can also reload the current project
with reload. This may be necessary when the build file changes on disk or when the project is
corrupted (which happens sometimes after a build error because some tasks don't work after an
error).

The desc command describes the current project (behaves like the -projecthelp command
line parameter for Ant).

I have also implemented a timer (to display execution time for builds) that you can switch on or off
using the timer command. The result is in milliseconds (because the builds are so fast :o)

Notes

Builds in the console are faster because you save startup times, thus performance gains are more
important for small builds. For instance, for an empty build (that doesn't do anything), the build in
the console takes about 30 ms and 5 seconds in Ant (more than 100 times slower). Nevertheless,
performance boost should not be neglected for real world project. For instance, rebuilding the whole
SAT project takes about 12 seconds in the console and 25 seconds running Ant (more than 2 times
slower).

Furthermore, this console supercedes my server task which is far more complex to use and I don't
integrate it from the 0.9 release (you can still download it in version 0.7.

The console was developped and tested using the latest stable Ant release, that is version 1.5.3-1. Le
me know if you have tested with other versions.

Tasks description

SAT is a set of optional tasks for Ant, thus for each task there is a taskdef element (to tell Ant which
class is associated to a given task) and an XML element.

07/14/03 Sweet Ant Tools 1.0 3

https://sweetohm.net/arc/sat-0.7.zip

File, dir et fileset

All those tasks select files using file and dir attributes and the fileset element. These attributes and
element use the following syntax:

file: This is an attribute that contains a list (coma separated) of files to process.For instance,
file="foo" selects the file foo while file="foo,bar" selects the files foo and bar.

•

dir: This is an attribute containing a (coma separated) list of directories to process. This
selects all files in a directory but not those in a subdirectory. For instance, dir="foo"
selects all files in the foo directory, but none in a foo/bar subdirectory. dir="foo,bar"
selects all files in directories foo and bar.

•

fileset: This is a nested element to select files. See Ant documentation for more details about
this element.

•

Files or directories with relative path are relative to the Ant script. Thus, the attribute file="foo"
in the script /home/casa/build.xml selects the file /home/casa/foo.

It is possible to mix the file and dir attributes and fileset elements to select files. For instance:

<foo file="file" dir="dir">
 <fileset dir="dir2" includes="*.xml"/>
</foo>

Selects the file file, files in the directory dir and XML files in the dir2 directory.

Bsh

Description

This task launch a Beanshell script. This script may be nested in the element or written in a file. It is
also possible to give arguments to the script with the args attribute or a nested script.

The declarative element (after the <project> one) is the following:

<taskdef name="bsh" classname="net.cafebabe.sat.bsh.BshTask"/>

This task was successfully tested with Beanshell version 1.1a18 (which jar file is included in this
package). It doesn't work with version 1.1a12 or older (the interface bsh.ConsoleInterface
was different for those versions) and with version 1.2b1 (due to a bug).

Parameters

Attribute Description Required

file Beanshell script(s) to execute No

dir Directory(ies) with Beanshell scripts to execute No

07/14/03 Sweet Ant Tools 1.0 4

http://www.beanshell.org

Attribute Description Required

args
Argument list (coma separated) to pass the the Beanshell script. You
can access this argument array using
this.interpreter.get("bsh.args");

No

reset Indicates if the Beanshell interpreter should be reset before to launch the
script. Can take the true or false values.

No (defaults
to true)

Nested elements

You may select scripts to launch using <fileset> nested elements. See Ant documentation for more
details about this element.

Nested text

A script may be nested within a <bsh> element.

Ant properties

A Beanshell script can access Ant properties using setAntProperty() and
getAntProperty() commands. See below for a short sample script.

Beanshell Commands

This package also provides Beanshell commands to access Ant properties (defined using
property elements) from within a Beanshell script. Those commands have the following
signature:

void setAntProperty(String name,String value): defines a property
called name with a value value. This property doesn't have to be defined in a property
element.

•

String getAntProperty(String name): returns the value of the Ant property
called name.

•

Another command resolves a file name according to the directory where the Ant script is running. In
an Ant script, a file name is relative to the directory of the script (instead of the current directory).
The signature of this method is the following:

File resolveAntFile(String file): return the file resolved according to the
directory where the script is running.

•

This task defines a variable called antProject in the Beanshell interpreter. This variable contains a
reference to the running Ant project.

Examples

To launch a script bsh.bsh in the test directory, you may write:

07/14/03 Sweet Ant Tools 1.0 5

<bsh file="test/bsh.bsh"/>

You can also write the script in the <bsh> element:

<bsh>
 print("Hello World !");
</bsh>

Note that a script nested in a bsh element is parsed when the Ant script is executed. Thus it should
not contain < nor & characters or it must be nested in a in a CDATA declaration as following:

<bsh>
 <![CDATA[
 print("<date>"+new Date()+"</date>");
]]>
</bsh>

To pass a foo argument to the script (as if it was was passed on the command line), you may use an
args attribute:

<bsh file="test/bsh.bsh" args="foo"/>

Now a more complex sample:

<bsh file="test/bsh.bsh" args="foo,bar">
 nested="nested";
</bsh>

Where the script test/bsh.bsh is the following:

#!/usr/local/bin/bsh
// display arguments on the command line
args=this.interpreter.get("bsh.args");;
if(args!=null) {
 for(int i=0;i<args.length;i++)
 print("Argument "+i+": "+args[i]);
}
// display argument in nested script
print("Argument nested: "+nested);

Will produce the following output:

bsh:
 [bsh] Arguments: foo bar
 [bsh] Executing nested script...
 [bsh] Executing script 'test/bsh.bsh'...

07/14/03 Sweet Ant Tools 1.0 6

 [bsh] Argument 0: foo
 [bsh] Argument 1: bar
 [bsh] Argument nested: nested

This trace shows the evaluation order of the beanshell code:

The arguments are declared first.1.
Then the nested script (if any) is executed.2.
Then the selected script(s) are executed.3.

The following script displays the value of foo property and give a value to the bar property.

print(getAntProperty("foo");
setProperty("bar","Hello World!");

XTask

Description

This task uses the XT XSLT processor from James Clark to transform an XML document. This
processor is, according to many benchmarks, the fastest Java processor (but the author doesn't
develop it anymore).

The task declaration (after the <project> element) is the following:

<taskdef name="xtask" classname="net.cafebabe.sat.xml.XTask"/>

Parameters

Attribute Description Required

file File(s) to transform. No

dir Directory(ies) of the files to transform. No

style The stylesheet to use for transformation. Yes

tofile The generated file (if there is only one). No

todir Directory(ies) of the generated files. No

extension The file extension of the generated files. No (defaults to
.html)

force
Force the transformation even if the generated file already exists and
is newer than the XML file and the stylesheet. May take true or false
values.

No (defaults to
false)

07/14/03 Sweet Ant Tools 1.0 7

http://www.jclark.com/xml/xt.html

Nested elements

You may select files to transform with a nested <fileset> element. See Ant documentation for more
details about this element.

It is also possible to pass arguments to the XSLT processor using <arg> elements. For instance, to
assign the value bar to the parameter foo, you should nest within the <xtask> element:

<arg name="foo" value="bar"/>

This element may not contain text.

Examples

To transform a file foo.xml to bar.html using the transfo.xsl stylesheet, you may write:

<xtask file="foo.xml"
 style="transfo.xsl"
 tofile="bar.html"/>

To assign the value bar to the parameter named foo, you will write the element:

<xtask file="foo.xml"
 style="transfo.xsl"
 tofile="bar.html">
 <arg name="foo" value="bar"/>
</xtask>

Note

This task was previously distributed alone on my page (version 0.1). It is now part of the SAT
package.

Valid

Description

This task validates XML files. You may validate a file against its DTD or simply check the XML
syntax (check that the document is well formed). You can choose to stop Ant compilation while an
error is encountered, the error level or the maximum number of parsing errors to display for each
file.

The declarative element (after the <project> one) is the following:

<taskdef name="valid" classname="net.cafebabe.sat.xml.ValidTask"/>

07/14/03 Sweet Ant Tools 1.0 8

Parameters

Attribute Description Required

file File(s) to validate. No

dir Directory(ies) of the files to validate. No

dtd
Tells the parser if the file(s) to parse have a DTD (stated in the
DOCTYPE) or if it should only check the XML syntax (if the value
of this attribute is false).

No (defaults
to true)

failonerror Tells the parser to stop Ant buildfile processing when it encounters
an error (if the value of this attribute is true).

No (defaults
to true)

errorlevel
The error level to check (errors of that level or higher are displayed
and may interrupt Ant processing). Possible values are warning,
error and fatal.

No (defaults
to fatal)

maxerrors This is the maximum number of errors to display for an XML file.
This number must be greater than 0.

No (defaults
to 100)

Nested elements

The files to merge can be selected using a <fileset> element. See Ant documentation for more
details about this element.

This element may not contain text.

Examples

To validate all XML files of the a directory, copy the following buildfile in that directory:

<?xml version="1.0" encoding="iso-8859-1"?>

<project name="xml" default="valid" basedir=".">

 <taskdef name="valid" classname="net.cafebabe.sat.xml.ValidTask"/>

 <target name="valid">
 <valid dtd="true"
 failonerror="true"
 errorlevel="fatal"
 maxerrors="100">
 <fileset dir="." includes="*.xml"/>
 </valid>
 </target>

</project>

Then launch Ant typing ant on the command line. Note that attributes have their default values.
Adapt this file to meet your needs.

07/14/03 Sweet Ant Tools 1.0 9

If you want to validate all Ant buildfile on your disk, launch in the root directory the following file:

<?xml version="1.0" encoding="iso-8859-1"?>

<project name="xml" default="valid" basedir=".">

 <taskdef name="valid" classname="net.cafebabe.sat.xml.ValidTask"/>

 <target name="valid">
 <valid dtd="false"
 failonerror="false"
 errorlevel="warning"
 maxerrors="1">
 <fileset dir="." includes="**/build.xml"/>
 </valid>
 </target>

</project>

The dtd attribute is false because buildfile do not have a DTD, you ask the parser not to stop when
it encounters an error to scan the whole disk, you put the error level on the lowest value to detect
any problem and you ask to display only one error per file in order to avoid too many error
messages.

Merge

Description

This element is for merging XML files into one. This file contains the root elements within a
nesting one.

The task declaration (after the <project> element) is the following:

 <taskdef name="merge" classname="net.cafebabe.sat.xml.MergeTask"/>

For instance, this element may merge the following XML files:

<?xml version="1.0"?>
<root>
 <element1/>
 <element2/>
 <element3/>
</root>

and:

<?xml version="1.0"?>
<root>
 <element4/>

07/14/03 Sweet Ant Tools 1.0 10

 <element5/>
</root>

In a single file like this one:

<?xml version="1.0"?>
<index>
 <root>
 <element1/>
 <element2/>
 <element3/>
 </root>
 <root>
 <element4/>
 <element5/>
 </root>
</index>

This element is useful to generate composite documents. For instance, the index page of my site is
generated using this task. A presentation text, news and links (that are small distinct files) are
merged in a single XML file. This file is transformed into an HTML page using XSLT.

Parameters

Attribute Description Required

file File(s) to merge. No

dir Directory(ies) of the files to merge. No

tofile File name of the resulting file. Yes

encoding

This is the encoding of the resulting file. For instance, the encoding for
western European languages is iso-8859-1. This gives the following
XML declaration element: <?xml version="1.0"
encoding="iso-8859-1"?>.

No (defaults
to ASCII
encoding)

doctype

This is the second part of the doctype declaration. For instance, a
doctype such as article PUBLIC "-//CASA//DTD article//FR"
"article.dtd" would result in the doctype <!DOCTYPE article
PUBLIC "-//CASA//DTD article//FR"
"article.dtd">. The root element of the document is extracted
from this doctype. If no doctype is provided, the root element is
<index>.

No (defaults
to no
doctype)

Nested elements

The files to merge can be selected using a <fileset> element. See Ant documentation for more
details about this element.

07/14/03 Sweet Ant Tools 1.0 11

https://sweetohm.net

This element may not contain text.

Examples

To merge XML files in the index directory using ISO 8859-1 encoding into a file called index.xml
with no doctype (and a root element index), you may write:

<merge dir="index"
 tofile="index.xml"
 encoding="iso-8859-1"
 doctype="index PUBLIC '-//CASA//DTD index//FR' 'index.dtd'"/>

To merge the XML files in the xml directory and subdirectories, in a single index.xml file, you may
write:

<merge tofile="index.xml"
 encoding="iso-8859-1"
 doctype="index PUBLIC '-//CASA//DTD index//FR' 'index.dtd'">
 <fileset dir="xml" includes="**/*.xml"/>
</merge>

Insert

Description

This task is for replacing a processing instruction with the content of a given file. You can thus
include an HTML file fragment in an HTML file. This is the way menus are included in the web
pages of my site.

The task declaration (after the <project> element) is the following:

<taskdef name="insert" classname="net.cafebabe.sat.xml.InsertTask"/>

Parameters

Attribute Description Required

file File(s) to process. No

dir Directory(ies) of the files to process. No

pattern
This is the name of the processing instruction to replace. For instance,
if the pattern is foo, the processing instructions to replace are <?foo
?>.

No
(defaults to
insert)

source File to insert to replace processing instructions. Yes

07/14/03 Sweet Ant Tools 1.0 12

https://sweetohm.net
https://sweetohm.net

Nested elements

You can select the files to process using a <fileset> element. See Ant documentation for more
details about this element.

This element may not contain text.

Examples

To replace <?menu ?> processing instructions of files in the html directory with the content of the
menu.html file, you may write the following element:

<insert dir="html"
 pattern="menu"
 source="menu.html"/>

Nest

Description

Using this task, you can nest files within a given one, replacing a given processing instruction. You
may this way nest HTML fragments in a page template.

The task declaration (after the <project> element) is the following:

<taskdef name="nest" classname="net.cafebabe.sat.xml.NestTask"/>

Parameters

Attribute Description Required

file File(s) to process. No

dir Directory for files to process No

pattern
The name of the processing instruction to replace. For instance, if this
pattern value is foo, the replaced processing instructions are <?foo
?>.

No (defaults
to nest)

source The file to nest around selected files. Oui

Nested elements

You can select the files to process using a <fileset> element. See Ant documentation for more
details about this element.

This element may not contain text.

07/14/03 Sweet Ant Tools 1.0 13

Exemples

To nest files in the html directory within the file page.html, replacing the <?body ? processing
instruction, you may write the following element:

<nest source="page.html"
 pattern="body"
 dir="html"/>

Split

Description

This task splits files using processing instructions. The name of the generated files is written in the
processing instruction.

The task declaration (after the <project> element) is the following:

<taskdef name="split" classname="net.cafebabe.sat.xml.SplitTask"/>

For instance, the following file:

<?xml version="1.0"?>
<?split file="page1.html"?>
<html>
...
</html>
<?split file="page1.html"?>
<?split file="page2.html"?>
<html>
...
</html>
<?split file="page2.html"?>

Will be split in two files (page1.html and page2.html):

<html>
...
</html>

Most of XSLT processors (such as XT or Xalan) implement extensions to produce more than one
file but this task allows you to avoid to pollute your XSLT code with proprietary one.

Parameters

Attribute Description Required

07/14/03 Sweet Ant Tools 1.0 14

http://www.jclark.com/xml/xt.html
http://xml.apache.org/xalan

Attribute Description Required

file File(s) to process. No

dir Directory(ies) of the files to process. No

pattern
This is the name of the processing instruction used to split the files.
For instance, if this pattern is split, the processing instructions where to
cut files look like <?split file="foo"?>.

No (defaults
to split)

Nested elements

You can choose the files to process with a nested <fileset> element. See Ant documentation for
more details about this element.

This element may not contain text.

Examples

To split a file called foo using processing instructions that look like <?cut file="bar"?>, you
would write:

<split file="foo"
 pattern="cut"/>

XML Word Count

Description

This task counts words in an XML document. Useful when you write an XML file with word count
constraints (for an article for instance). The text in any element of the document is taken into
account while the text in attributes is ignored. This default behavior may be changed using the task
parameters.

The task declaration (after the <project> element) is the following:

<taskdef name="xwc" classname="net.cafebabe.sat.xml.WordCountTask"/>

Parameters

Attribute Description Required

separators The list of separator characters (characters between
words).

No (defaults to
a reasonable list
of separators).

excludeElements A coma separated list of elements to exclude from the
word count.

No (defaults to
no elements).

07/14/03 Sweet Ant Tools 1.0 15

Attribute Description Required

singleElements A coma separated list of elements that count as a single
word.

No (defaults to
no elements).

includeAttributes
A coma separated list of attributes to include in the word
count. Those attributes are written as element@attribute,
thus an attribute is associated to an element.

No (defaults to
no attributes).

documentProperties

A file that contains the properties of the document (that is
a list of elements to exclude, single elements and
attributes to include). This is a properties file containing
the properties separators, excludeElements,
singleElements and includeAttributes. Each
of these property may be empty.

No (no
properties are
loaded when
empty).

property The Ant property where the word count is put. Yes

propertyFiles The Ant property where to put the file count. No (defaults to
no property).

quiet If set to yes, the task doesn't display any word and file
count.

No (default to
no).

Nested elements

You can choose the files to process with a nested <fileset> element. See Ant documentation for
more details about this element.

This element may not contain text.

Examples

Let's say you want to count words in the XML files of the current directory except build.xml and
want to exclude the source element of the word count. You may write the following target:

<target name="wc">
 <xwc excludeElements="source">
 <fileset dir="." includes="*.xml" excludes="build.xml"/>
 </xwc>
</target>

This will produce the following output:

$ ant wc
Buildfile: build.xml

wc:
 [xwc] 8414 words in 2 file(s).

BUILD SUCCESSFUL

07/14/03 Sweet Ant Tools 1.0 16

Total time: 4 seconds

Now let's suppose that we want to write the count rules in a properties file named
document.properties:

excludeElements=comment,source
singleElements=file,keyb,code
includeAttributes=sect@title

This file indicates the following rules:

We must exclude elements comment and source from the word count.•
The elements file, keyb and code must count as a single word.•
The text in attributes title in the sect elements must be taken into account.•

To count words in XML documents of the xml directory using those rules and put the result in the
wc Ant property, we might write:

<target name="wc">
 <xwc property="wc"
 documentProperties="document.properties">
 <fileset dir="xml" includes="*.xml"/>
 </xwc>
</target>

Link

Description

This task checks links in HTML files. It distincts two kinds of links: local links (that point to a file
in the same site and are relatives) and external ones (that point to other sites and start with a
protocol indicator such as http: or ftp:).

The task declaration (after the <project> element) is the following:

<taskdef name="link" classname="net.cafebabe.sat.html.LinkTask"/>

Parameters

Attribute Description Required

file File(s) to process. No

dir Directory(ies) to process. No

external Indicates if external links should be checked. No (defaults to
false).

07/14/03 Sweet Ant Tools 1.0 17

Attribute Description Required

interrupt Indicates if processing should stop with an error message if a
broken link is met.

No (defaults to
false).

log The name of the file where to log link checks. No

Nested elements

You can choose the files to process with a nested <fileset> element. See Ant documentation for
more details about this element.

This element may not contain text.

Examples

Let's suppose that you want to check HTML files in the html directory and it's subdirectories and
want to stop processing if a broken link is met. You would write:

<link external="false"
 interrupt="true">
 <fileset dir="html" includes="**/*.html"/>
</link>

If a broken link is met, the compilation will stop with an error message that gives the file and link.

If you want to to check external links (which may be quite long) without stopping on error and log
checks in a file named links.txt, you may write:

<link external="true"
 interrupt="false"
 log="links.txt">
 <fileset dir="html" includes="**/*.html"/>
</link>

Emacs mode

Ant is widely used to build Java projects, and thus is integrated to many Java development tools
(such as JDE, an Emacs mode for Java development). Nevertheless, Ant also proves to be helpful in
many other occasions, such as generate HTML documentation from XML source files. That's what
lead me to develop this standalone Ant mode for Emacs.

To install this Ant mode, copy el/ant.el file in a location where Emacs will find it and add the
following lines in your .emacs configuration file:

(load "ant")
(ant-mode)

07/14/03 Sweet Ant Tools 1.0 18

When you restart Emacs, an Ant menu appears, with the following entries:

Build: Launch Ant. A prompt in the minibuffer enables you to type the target to launch. If
you enter no target, the default one will run. You may give more than one target, separating
them with a white space.

•

Rebuild: Launch Ant using the target you used in last execution.•
Build File: The default behavior is to search for the build file recursively in the directory
tree. Using this menu option, you can use any build file.

•

Targets: Prints the list of targets in the minibuffer.•
Help: Print an help screen on the build file (a list of targets and their description).•
Start Server: Starts Ant in server mode (see the server task bellow). This feature is quite
experimental and buggy).

•

Stop Server: Stops Ant running in server mode.•

The result of the build is printed in the compilation buffer and you may thus click on an error
message to open the responsible file in an Emacs buffer.

It may be useful to bind keys to Ant calls. For instance, my .emacs file has the following lines:

(global-set-key [f2] 'ant-build)
(global-set-key [f3] 'ant-rebuild)

License

This software is under Apache Software License. You may find a copy of this license (and of the
licenses of other software used in this program) in the LICENSE file of SAT installation directory.

History

Version 0.9 (2003-07-14)

Upadtes are the following:

The server task has been removed from the project and is not supported anymore. Use the
Ant Console instead, which is much simpler to use.

•

Version 0.8 (2003-07-13)

Updates are the following:

All tasks have been moved in the package net.cafebabe.sat. This is the last time, I
swear :o)

•

I have developped a console (which is far more efficient than the server mode).•
Scripts antc, to run the console, and ants, to run the server, have been added in the bin
directory.

•

07/14/03 Sweet Ant Tools 1.0 19

http://www.apache.org/LICENSE.txt

Version 0.7 (2002-11-11)

The documentation uses my new DTD and has been updated.

New tasks:

Server: Boosts builds.•
Nest: New XML management task.•
XML Word Count: To count words in XML documents.•

Bug fix and enhancements:

Task XTask debugged (to run in server mode).•
Encoding management enhanced in merge task.•
Updated to Ant version 1.5.1.•

Version 0.6 (2001-10-27)

The task Marge has been optimized (using StringBuffer). The task is about 30 times faster !

Version 0.5 (2001-10-17)

New Valid task to validate XML files.

Version 0.4 (2001-09-22)

New Link task to check links in an HTML file.

Version 0.3 (2001-09-18)

Test tasks attributes. File attributes (such as file and dir) are checked.

Bug correction (file path are now relative to the project file location instead of the current
directory).

It is now possible to set and get Ant properties from within a Beanshell script using
setAntProperty() and getAntProperty() commands.

Tasks are no more executable outside Ant (this was much more simple within Ant and painful to
maintain).

The code was ported to the last versions of Beanshell (version 1.1a18 works, but 1.2b1 doesn't due
to a bug).

Added unit tests (in the prj/test directory).

07/14/03 Sweet Ant Tools 1.0 20

Version 0.2 (2001-08-20)

The JAXP API is now used in the XTask. Permits to instanciate the XML parser in a generic way
(independent from the parser implementation, provided that it implements the JAXP API). This
class also search correctly for files (in the directory of the build.xml file).

Version 0.1 (2001-06-06)

The tasks have been modified (after intensive usage to generate my web site) to be more
efficient/user friendly. Changes are the following:

bsh: <arg> nested elements have been removed (parameters are set in a nested script). args
attribute have been implemented to pass arguments to a script (as if they had been written on
the command line launching the script). source attribute have been replaced with file.
Attribute dir has been implemented. <fileset> element have been implemented. The output
of the scripts have been redirected in the standard way (after a [bsh] tag).

•

xtask: Bug correction. All attributes have changed (they where inefficient for real usage).
<fileset> have been implemented.

•

merge, insert and split: file and dir implemented. No more verbose attribute (output have
been tailored). <fileset> element implemented.

•

There should not be any syntax modification in future versions, that should only stabilize the code
(attributes have to be tested to produce informative error messages).

Version 0.0 (2001-05-28)

First distributed version of SAT. The tasks Bsh, XTask, Merge, Insert and Split have been
implemented.

Enjoy !

07/14/03 Sweet Ant Tools 1.0 21

