
Ant DTD
Michel Casabianca
casa@sweetohm.net

Why a DTD for Ant ? Because good XML editors (such as Emacs with PSGML) can ease build.xml
files writing only if a DTD can be parsed. For instance, Emacs + PSGML indicates possible
elements for a point in a file, prompts for mandatory attributes (in the minibuffer), etc. So a DTD is
nice.

Furthermore, a DTD is mandatory in some cases. For instance if you want to include a file A in a
file B. Let's consider the following file :

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE project PUBLIC "-//ANT//DTD project//EN" "project.dtd" [
<!ENTITY include SYSTEM "message.xml">
]>

<project name="test" default="task" basedir=".">

 <target name="task">
 <echo message="Hello"/>
 &include;
 </target>

</project>

It imports, with an entity in internal subset, the file message.xml :

<echo message="World !"/>

Then Ant ouputs :

$ ant
Buildfile: build.xml
Project base dir set to: /home/casa/tmp/test
Executing Target: task
Hello
World !
Completed in 2 seconds

04/03/00 Ant DTD 1

mailto:casa@sweetohm.net
http://www.emacs.org
http://www.lysator.liu.se/projects/about_psgml.html

The task defined in the file message.xml have been imported in the build.xml file and processed by
Ant.

I wrote such a DTD (it was painfull, believe me), you can download it here.

Maybe you wonder how it is possible to write such a DTD while users can define their own
elements (with the <taskref> element).

To solve this problem, there are two ways :

Internal subset
The first solution is to define an element associated with a task in the internal subset of the DTD
(within the DOCTYPE element).

For instance, if you declare a task as :

<xt xml="file.xml" xsl="file.xsl" out="file.html"/>

You may add to DOCTYPE the following fragment :

<!ENTITY % ext "| xt">

<!ELEMENT xt EMPTY>
<!ATTLIST xt
 xml CDATA #REQUIRED
 xsl CDATA #REQUIRED
 out CDATA #REQUIRED>

The role of <!ELEMENT> and <!ATTLIST> elements are obvious. But the entity <!ENTITY % ext
"| xt"> may seem strange. This entity is appended to the content definition of the element target
in the DTD :

<!ELEMENT target (ant | ... | zip %ext;)*>

The fragment | xt is appended to the content model so you can include an <xt> element in
<target>.

Extensions file
If you want an extension to be declared in all files, you add it to the project-ext.dtd file :

<!ENTITY % ext "| xt">

<!ELEMENT xt EMPTY>

04/03/00 Ant DTD 2

<!ATTLIST xt
 xml CDATA #REQUIRED
 xsl CDATA #REQUIRED
 out CDATA #REQUIRED>

The idea is the same, but the fragment is not declared in the DTD subset, instead it is in the
extension file that is included in the DTD with :

<!ENTITY % ext-file SYSTEM "project-ext.dtd">
%ext-file;

The method you choose depends on the accessibility you would desire to this extension. This is very
similar to placing extensions in a separate jar file or in Ant's jar. In the latter case, extensions are
allways reachable, whatever build.xml file you work on.

04/03/00 Ant DTD 3

