Go Booby Traps 7

Michel Casabianca
casa@sweetohm.net

Go programming language is easy to learn, but there are some tricky traps. This article series is
trying to show these booby traps so that you avoid them.

We would like to print the length of a string. So we write following code:

package main

func main () {
s := "échec"
println ("length of", s, "is", len(s))
}
On the Playground

But when we run it, we get:

$ go run broken.go
length of échec is 6

This is probably not what you expected! Why? How could you fix this code?

Explanation

The name character string is inaccurate for Go string type. We should name it bytes array. To be
precise, a Go string is an array of bytes resulting from the encoding of a string in UTF-8. As our
string contains an accentuated character, it won't result in a single byte encoded in UTF-8 but in
two. Thus the size of bytes array is not the same as the st ring length.

It remains to be seen how we can get the number of characters (or Runes in Go) in this string...

First solution is to convert the string into a Runes array and get its size:

package main

func main () {
s := "échec"
println ("length of", s, "is", len([]lrune(s)))
}
On the Playground

05/19/22 Go Booby Traps 7


mailto:casa@sweetohm.net
https://go.dev/play/p/0wZvall4B5Q
https://go.dev/play/p/Q8YpPtp4SdC

Another solution is to use dedicated function RuneCount InString () from utf8 package:

package main
import "unicode/utf8"
func main () {
s := "échec"
println ("length of", s, "is", utf8.RuneCountInString(s))

On the Playground

In both cases, we get the correct size:

$ go run fixed.go
length of échec is 5

What you must remember here is that 1en (string) returns the length of a string if it contains
only ASCII characters. Thus you should not use function 1en (string) in the general case.

Enjoy!

05/19/22 Go Booby Traps 7


https://go.dev/play/p/yUlGtTSiO2R

