
Go Generics
Michel Casabianca
casa@sweetohm.net

Generics are the most important new feature of the 1.18 version of Go that was just released. I offer
you a quick tour of this new feature in this article.

Before Go 1.18

It has always been possible to produce generic code with Go using interface{} type. For instance,
you write a function that prints n times given value with:

package main

import "fmt"

func Repeat(something interface{}, times int) {
 for i := 0; i < times; i++ {
 fmt.Println(something)
 }
}

func main() {
 Repeat("Hello World!", 3)
 Repeat(42, 3)
}

On the Playground

This example is very simple because function fmt.Println() accepts any type. Before Go 1.18,
its signature was func Println(a ...interface{}) (n int, err error).

Furthermore, one can define an argument type with a specific interface. For instance:

package main

import (
 "errors"
 "strconv"
)

type Failure int

func (t Failure) Error() string {
 return strconv.Itoa(int(t))
}

func PrintError(err error) {

04/08/22 Go Generics 1

mailto:casa@sweetohm.net
https://go.dev/play/p/6BYtkoXfzNV

 println("error: " + err.Error())
}

func main() {
 PrintError(errors.New("This is a test!"))
 PrintError(Failure(42))
}

On the Playground

Type error is an interface that defines a single method Error() string. Thus you can send
anything to function PrintError() provided it implements method Error().

The beginning of troubles

Let's suppose we want to write a function that returns the maximum of given values. We could
write, for integers, following code:

package main

func Max(x, y int) int {
 if x > y {
 return x
 }
 return y
}

func main() {
 println(Max(1, 2))
}

On the Playground

If we want to generalize this function for other types, interfaces are not of any help because no
function can define comparison operators. Thus we have to write this function for all types! It
would be possible to accept type interface{}, but we would have to do type assertions and this
would not simplify things.

Generics to the rescue

Go 1.18 implements Generics. We can now add type parameters in function signature. To make our
Max() function generic, we could write:

package main

func Max[N int | float64](x, y N) N {
 if x > y {
 return x
 }

04/08/22 Go Generics 2

https://go.dev/play/p/vVi5CyxWD4Q
https://go.dev/play/p/MeVme43ZZon

 return y
}

func main() {
 println(Max(1, 2))
 println(Max(1.2, 2.1))
}

On the Playground

This way, with type parameter [N int | float64], we indicate that function parameters may
be of type int or float64. Note that we can't mix types, thus call Max(1, 2.0) would not
compile.

Interfaces strike back

With Go 1.18, we can now define interfaces as a list of types. We could write example above as
follows:

package main

type Number interface {
 int | int16 | int32 | int64 | float32 | float64
}

func Max[N Number](x, y N) N {
 if x > y {
 return x
 }
 return y
}

func main() {
 println(Max(1, 2))
 println(Max(1.2, 2.1))
}

On the Playground

Type aliases

If we define an alias for given type, we can include it in an interface with ~ character, as follows:

package main

type Number interface {
 ~int | ~int16 | ~int32 | ~int64 | ~float32 | ~float64
}

type Num int

04/08/22 Go Generics 3

https://go.dev/play/p/JS5qi9JpgCm
https://go.dev/play/p/pq2kbXNwZpV

func Max[N Number](x, y N) N {
 if x > y {
 return x
 }
 return y
}

func main() {
 println(Max(Num(1), Num(2)))
}

On the Playground

Thus ~int includes type int but also all its aliases, and thus also Num.

Constraints

It can be very tedious to define your own interfaces with type lists. Package
golang.org/x/exp/constraints provides following interfaces:

Signed : ~int | ~int8 | ~int16 | ~int32 | ~int64•
Unsigned : ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr•
Integer : Signed | Unsigned•
Float : ~float32 | ~float64•
Ordered : Integer | Float | ~string•
Complex : ~complex64 | ~complex128•

We could now use constraint constraints.Ordered as follows:

package main

import "golang.org/x/exp/constraints"

func Max[N constraints.Ordered](x, y N) N {
 if x > y { return x }
 return y
}

func main() {
 println(Max("abc", "def"))
}

On the Playground

Furthermore, Go 1.18 defines two other constraints:

any which is a new name for interface{}•
comparable for types that can be compared with == and != operators•

04/08/22 Go Generics 4

https://go.dev/play/p/-CsCNJm5Dh4
https://go.dev/play/p/6-B_UhnjlkF

Instantiation

It is possible to pass type arguments while calling a generic function. For instance:

m := Max[int](1, 2)

Expression Max[int] is an instantiation of generic function Max. It defines types for parameters.
We could write:

MaxFloat := Max[float64]
m := MaxFloat(1.0, 2.0)

Function MaxFloat is now a non generic function that accepts only float arguments.

Types with type parameters

Let's say we want to compute the sum of all elements in a given list. With standard Go linked lists,
we could write:

package main

import "container/list"

func main() {
 list := &list.List{}
 list.PushBack(1)
 list.PushBack(2)
 list.PushBack(3)
 sum := 0
 for e := list.Front(); e != nil; e = n.Next() {
 sum += e.Value
 }
 println(sum)
}

On the Playground

This doesn't compile because we can't add interface{} types, which is type for list elements value:
src/list.go:12:3: invalid operation: sum += e.Value (mismatched
types int and any).

Using type interface{} or any is boring because we must cast values to use them. Of course
there is a Generics based solution. Here is a minimalist implementation of linked list with Generics:

package main

type Element[T any] struct {

04/08/22 Go Generics 5

https://go.dev/play/p/CLY7xgTdKWs

 Next *Element[T]
 Value T
}

type List[T any] struct {
 Front *Element[T]
 Last *Element[T]
}

func (l *List[T]) PushBack(value T) {
 node := &Element[T]{
 Next: nil,
 Value: value,
 }
 if l.Front == nil {
 l.Front = node
 l.Last = node
 } else {
 l.Last.Next = node
 l.Last = node
 }
}

func main() {
 list := &List[int]{}
 list.PushBack(1)
 list.PushBack(2)
 list.PushBack(3)
 sum := 0
 for n := list.Front; n != nil; n = n.Next {
 sum += n.Value
 }
 println(sum)
}

On the Playground

In this code we added type parameters to type definitions, as in Element[T any]. This notation
indicates that we define type Element that contains type T that may be anything. We don't have to
cast values to use them.

It is important to note that we set list type on instanciation:

list := &List[int]{}

This way we tell compiler that our list contains int and we now can use them as integers.

Type inference

We saw that we can set type parameters while calling a generic function with:

04/08/22 Go Generics 6

https://go.dev/play/p/-5lFyeE55hO

m := Max[int](1, 2)

In this case, compiler knows parameters types because we tell it. But when we write:

m := Max(1, 2)

In this case compiler infers parameters type of the generic function from argument's type while
performing call. This inference type is called function argument type inference. Nevertheless, it is
sometimes impossible to infer types for return values, as in this example:

func NewT[T any]() *T {
 ...
}

We must then help compiler instantiating function before calling it:

t := NewT[int]()

When to use generics?

First of all, don't define constraints before writing code. This might sound a good idea to
anticipate writing constraints before your code, but this is useless.

Use case for Generics is when you have duplicated code with many types. In this case, Generics
are a better alternative than using interface{} type for performance, memory usage and code
simplicity. This is the case for data structures (such as linked lists or binary trees for instance).

Conclusion

Generics are the new big thing in Go 1.18 which is the most important release since Go was Open
Sourced. Nevertheless, this feature was not heavily tested on production and thus should be used
with care, and of course widely tested.

04/08/22 Go Generics 7

Generics Gopher

04/08/22 Go Generics 8

